
Agricultural child labour in response to climate change*

Author: Mathias Weidinger (i6113552)�

Supervisor: Prof. Dr. Pierre Mohnen�

September 10, 2021

Abstract

Anthropogenic climate change severely impacts agriculture in developing coun-

tries and with it the millions of children actively involved in that sector. Economic

theory can be used to characterise the effects that climate change might have on

agricultural child labour. Merging two strands of theoretical literature, from En-

vironmental Economics and Development Economics, this paper presents a simple

household decision model of child labour supply under climate change. To take the

model to the data, I combine a household panel from Nigeria with geo-coded weather

records and estimate the dose-response functions for temperature and precipitation.

Higher mean-temperatures are estimated to increase climate change, whereas the

effects of extreme weather events are mixed and highly non-linear.
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1 Introduction

Globally, nearly one in ten children are subjected to child labour, predominantly in low and

middle income countries (LMICs). This fraction doubles when focusing on Africa alone.

On any given day in 2016, 152 million African children aged five to seventeen were in some

form of child labour; half of them worked under hazardous conditions (ILO, 2017). The

consequences of this are well-understood:

Child labour can result in extreme bodily and mental harm, and even death. It can
lead to slavery and sexual or economic exploitation. And in nearly every case, it cuts
children off from schooling and health care, restricting their fundamental rights and
threatening their futures (UNICEF, 2020).1

Unfortunately, Child labour is notoriously difficult to regulate. This is in part due

to its informality: Most child labour is unpaid and takes place far off the formal labour

market, on family farms or in family owned enterprises. Consequently, the compliance

costs of anti-child labour legislation are so high that even where such laws are in place,

enforcement tends to be lax, if not entirely absent.2 Despite sustained international efforts

to eliminate it, child labour decreased by only one percent in 2008-2012 and the ILO (2017)

estimates that at the current rate of progress, 121 million children will still be working in

2025.3

Disaggregating the data reveals that 59 per cent of working children in Africa are

between 5 and 11 years old and that almost nine in ten of them work in agriculture -

61.4 million children in absolute terms. The uniquely high concentration of child labour in

agriculture - particularly in Sub-Saharan Africa (SSA) - begs a question: What happens

to these children if agriculture becomes an increasingly unstable sector? Do they work

1For a recent review of the adverse health outcomes of child labour, see Ibrahim et al. (2018).
2Note that this is not necessarily due to negligence by the government. Most countries with high rates

of child labour also suffer from limited fiscal capacity and, consequently, prohibitively small budgets.
3Article 32 of the 1989 UN Convention on the Rights of the Child (UNCRC) recognises the right of

every child to be protected from economic exploitation and from performing work that is hazardous or
harmful to their health and development or that interferes with their education. The ILO conventions on
minimum age for admission to employment (no. 138, ratified by 173 countries) and on the the elimination
of the worst forms of child labour (no. 182, ratified by 187 countries) are binding international agreements
to this effect. Targets 8.7 and 16.2 of the United Nation’s Sustainable Development Goals additionally
target child labour, pledging to end it in all its forms by 2025.
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more or less hours on average? Does their work become more or less hazardous? How is

their overall welfare affected? These concerns bear unprecedented relevance in the wake of

anthropogenic climate change.

There is mounting evidence that the human-induced accumulation of Green House

Gases (GHG) in the earth’s atmosphere has caused the global climate to change and

will continue to do so in the coming centuries (Pachauri et al., 2015). The occurance

of many new record highs in recent decades suggest that the earth’s mean temperature

is rising. Munasinghe et al. (2012), for instance, show that the frequency of extremely

high temperatures across the global landmass increased tenfold between the beginning of

the twentieth century and 1999–2008. The high frequency of new record lows over the

same period suggests a simultaneous rise in the variance of temperature (Auffhammer and

Schlenker, 2014). As a consequence, climate change persistently increases the probabilities

of extreme weather events such as droughts, floods, snow storms, heat waves, cyclones, and

hurricanes (Pachauri et al., 2015). These changes in the natural environment profoundly

alter the setting for human economic activity on planet earth.

It is of course true that climate change affects different regions in different ways. This

heterogeneity has inspired some to speculate, whether the negative impacts experienced in

some areas could be offset by positive effects elsewhere4, or be it in strictly economic terms.

Tol, p. 34, for instance, notes that “although the world population is concentrated in the

tropics, where the initial effects of climate change are probably negative, the relatively

smaller size of the economy in these areas means that gains for the high-income areas of

the world exceed losses in the low-income areas”. He later qualifies this statement, adding

that, in the long term, warming above 1-2 degrees will likely have negative total effects. But

even for the short-term, arguments like Tol’s ought to be read with some scepticism. They

are not inherently incorrect, but their accounting method entirely ignores the distributional

4For instance, while agricultural yields are likely to decrease in SSA, some conjecture that large parts
of northern Eurasia, which are currently covered by permafrost, could become arable as temperatures rise.
Moreover, an elevated concentration of atmospheric CO2 reduces water stress in plants and may make
them grow faster. This phenomenon, known as CO2-stimulation, and its beneficial effect on crop yields
remain understudied and, therefore, unincorporated in most projections (e.g., in Schlenker and Lobell,
2010).
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consequences of climate change (and indirect economic effects that stem from them).

The world’s richest countries, which are predominantly situated in the global North,

are responsible for almost eighty percent5 of GHG emissions in 1850-2011 and high income

countries continue to emit the most GHGs by far6 (Ritchie and Roser, 2017). Due to their

location, high income countries also experience more benign effects of climate change com-

pared to their more climate-vulnerable counterparts further south, which face the harshest

consequences. Intensified temperature extremes, precipitation anomalies, and natural dis-

asters are all projected to disproportionately afflict Latin America, South Asia and the

Pacific, and Sub-Saharan Africa. Together, their populations account for the vast major-

ity of the world’s population and, in particular, the world’s poor. Thus, Climate Change

exacerbates existing global inequalities and there is an argument to be made for distribu-

tional considerations beyond simple aggregate cost-benefit analysis. Distributional aspects

are highly relevant for migration policy, international cooperation, and conflict-prevention

efforts - not to mention global solidarity.

In SSA alone, the effects of climate change are responsible for at least 1,000 deaths, 13

million people seriously afflicted7, and 520 USD million in direct economic damages since

2000. One-third of the world’s droughts occur in SSA, and the frequency of storms and

floods is growing fastest in this region (IMF, 2020). Agricultural yields, meanwhile, are

projected to fall significantly for five of the continent’s most important food crops: by 22

percent for maize, 17 percent for Sorghum, Millet and Groundnut, and eight percent for

cassava (Schlenker and Lobell, 2010). Similar negative impacts have been projected for

major cash-crops like coffee (Craparo et al., 2015)8 or cocoa (Boeckx et al., 2020). These

findings place agriculture at the centre of climate vulnerability, and with it the millions of

children working on farms throughout the world.

5The percentage is even higher when accounting for final consumption of goods, since great part of GHG
emissions in low and middle income countries stem from the production of export goods, predominantly
destined for high income countries.

6Note, however, that relative to 1990 most high income countries now have lower annual growth rate
of emissions whereas LMICs have increased their emissions substantially.

7This includes individuals who were injured, left homeless, food insecure, or lacking water and sanita-
tion.

8For contrasting findings, based on CO2-stimulation effects, see DaMatta et al. (2019).
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Even so, there is virtually no literature investigating the implications of climate change

for working children. The little empirical evidence that exists displays three common flaws:

limited data, misspecification, and a lack of theoretical underpinning. These shortcomings

and the policy-relevance and urgency9 of the child labour debate provide a clear motivation

for further research. This paper analyses the effects of climate change on the prevalence

of child labour in agriculture, both from a theoretical and an empirical perspective: How

does climate change - through persistent shocks to temperature and precipitation - affect

children’s labour supply?

After a detailed overview of the literature in section 2, section 3 extends the economic

theory of child labour to account for a sustained shock to agricultural household production

due to climate change. The resulting model produces a directional hypothesis that can be

tested empirically: Negative climate shocks to agricultural production decrease children’s

work hours. Section 4 provides arguments for Nigeria as a case study and presents appro-

priate data for the empirical analysis. The data chosen mend the shortcomings noted in

the literature; a longitudinal data set from Nigeria (2010-2016) is combined with geocoded

weather data from suitable ground level stations, supplemented by satellite-based esti-

mates. Section 5 outlines the empirical problem and describes the econometric framework

to tackle it. The findings drawn from this analysis are discussed in section 6. The results

offer novel and relevant input for weighing the costs and benefits of GHG emission abate-

ment – not only monetarily but through the lens of child welfare. Section 7, addresses

some caveats, provides ideas for further research, and concludes.

2 Literature

The topic at hand lies at the intersection of various strands of literature: Development

and Labour Economics have provided some models of child labour. Environmental and

Resource Economics feature a relatively recent and fast-growing literature on the economic

9Given the proximity of the 2025 deadline, scoped by SDG 8, to eliminate all forms of child labour, we
might soon see the window of opportunity for comprehensive global policy action closing.
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effects of climate change. Lastly, Agronomy has long studied the effects of weather shocks

on crop yields. This section offers an overview of the first and the second of these fields,

subsuming the third within the more recent climate studies, which draw heavily from it.

2.1 Child labour

The first economic texts to analyse child labour in detail date back to the late eighteenth

and the early nineteenth centuries. Among those who discussed its prevalence in Eu-

rope during the Industrial Revolution were Smith, Malthus, Engels and Marx (Edmonds,

2007).10 About a century later, the inception of human capital theory (Mincer, 1958;

Schultz, 1961; Becker, 1964) fundamentally transformed the research agenda in labour

economics and, as a corollary, gave some impetus to the study of child labour (see e.g.

Rosenzweig and Evenson, 1977). The seminal contribution by Basu and Van (1998) even-

tually launched an enduring proliferation of the literature on child labour (Edmonds, 2007)

in both theoretical and applied economics.11

Child labour is commonly modelled as a product of a constrained optimization exercise,

undertaken as if each household were one collective decision maker. In practice, this

implies that benevolent12 household heads take decisions for the entire household in a nearly

utilitarian fashion.13 Basu and Van (1998) proved so influential because they formalized

two long-held conjectures in axioms that became the bedrock of child labour theory.

The first of them, termed the ‘luxury axiom’, characterises parents’ preferences over

child labour as lexicographic: child labour occurs if and only if families cannot cover their

subsistence needs without it.14 This characterization of preferences would imply a strictly

10With the exception of Malthus, the early economists viewed children as investment goods. Marx,
in particular, remarked that “all family ties among the proletarians are torn asunder, and their children
transformed into simple articles of commerce and instruments of labour” (Marx and Engels, 1848).

11For a recent overview, see the dedicated volume by Posso (2020).
12On the credibility and extent of such benevolence and its implications, see Bhalotra (2002).
13Nearly because child leisure is strictly preferred to child work and it is unclear how this preference

affects the household’s aggregate utility.
14This axiom obtains its name from that fact that, from the household’s perspective, child leisure is a

luxury good, more of which is consumed as income rises. An early proponent of this inverse relationship,
Thomas Malthus noted that the prevalence of child labour in the late 18th century was proof that families
were unable to meet their most basic needs (see Edmonds, 2007).
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negative relationship between household income and the amount of child labour supplied by

a household - a testable hypothesis for which Basu and Van (1998) have drawn substantial

criticism (see e.g. Edmonds and Schady, 2012). Most notably, Bhalotra and Heady (2000,

2003) observe that children of land-rich families are often more likely to be in work than

those of land-poor households.

Subsequent replications of this observation spurred numerous attempts at solving the

‘wealth paradox’ that had become apparent in child labour theory. Bhalotra and Heady

(2003) attribute their findings to imperfections in the labour and credit markets as well

as household size: If labour markets are imperfect, child labour is increasing in farm

size and decreasing in household size, while access to credit spreads the effects out over

time (viz., consumption smoothing). Others attempt to resolve the paradox by altering

the original luxury axiom. Basu et al. (2010), for instance, propose that the relationship

between land wealth and child labour is not monotone - positive or negative - but follows an

inverted U-shape. Therefore, child labour will eventually decrease as households become

wealthier. Initially, however, an increase in land wealth increases both income and the

marginal benefit from child labour. It is only after a structural threshold, beyond which

child labour’s marginal cost outweighs its benefits, that the relationship reverses direction

and child labour decreases for good. This threshold could, for instance, be the income at

which the household can afford to contract external labour. 15

Dwibedi and Marjit (2017) propose another version of the luxury axiom by which

child labour decreases in relative poverty. This allows for child labour to rise even as

every household is made wealthier, as long as the relative distance in wealth between them

increases. Their observation that Pareto-dominance may not fully characterise poverty

mirrors an ongoing debate.16 Absolute measures of poverty are prone to underestimation

15Note that this narrative - things need to worsen before they can get better - resembles the well-known
tale of growth and inequality described by the Kuznets Curve (Kuznets, 1955, 1963) and that of growth
and pollution described by the Environmental Kuznets Curve (EKC). Notwithstanding their popularity,
these narratives remain empirically unsubstantiated. See, however, Piketty (2014) for evidence against the
Kuznets curve, and Mills and Waite (2009) and Özokcu and Özdemir (2017) for similar results regarding
the EKC.

16For poverty measurement techniques of both absolute and relative poverty, as well as their distinction,
see Sen (1976) and Ravallion (2020).
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and run risk to ignore the amplification of human misery that springs from inequality.

Relative poverty indicators, on the other hand, are only strictly relevant in conjunction with

absolute measures - a millionaire surrounded by billionaires is not ‘poor’ in the common

sense of the word.17 While hybrid measures, like ‘weakly relative poverty’ (Ravallion and

Chen, 2009) exist, I am not aware of attempts to characterise child labour responses to

varying degrees of absolute poverty and income inequality in an integrated framework.18

Contested to this day, the wealth paradox and the luxury axiom continue to inspire this

type of research.19

As for their second premise, Basu and Van (1998) model child labour as a substitute

for adult labour from the firm’s perspective - a notion captured in their ‘substitution

axiom’. The degree of such substitutability has been debated as well. Due to their lack

in experience and bodily development, children are commonly thought to be less suited

for most jobs in terms of their productive potential. Bar and Basu (2009) model children

to be productive (to some degree) only under adult supervision and entirely unproductive

otherwise. While it extends the theory beyond the substitution axiom, their model is likely

too restrictive. Toddlers aside, children - including those of very young ages - are capable of

performing many simple tasks, making them productive labourers in their own right. This

considered, the extensions proposed in annex A.2 allow for a more realistic characterisation

of substitution with and without supervision.

As the literature continues to append Basu and Van’s model, it also outgrows it.

Many of the more recent studies pay less attention to resolving the wealth paradox or

characterising substitution between adult and child labour, but explore instead how child

labour is affected through other channels. A natural extension is to explicitly model the

allocation of children’s time between work and education in terms of opportunity cost.

Dynamic models, owing much to human capital theory, describe how households weigh

17This is assuming that the currency used is not a highly inflated one (e.g. Euros rather than Venezuelan
Boĺıvars) and that price levels are comparable to those in the real world.

18D’Alessandro and Fioroni (2016) show how political support for child labour regulation is shaped by
inequality as it affects the welfare of low skilled adults differently than that of highly skilled ones.

19For more examples see e.g. Dumas (2007), Del Carpio (2008), Del Carpio and Loayza (2012), Edmonds
and Schady (2012), Sarkar and Sarkar (2016), Oryoie et al. (2017), and Noack (2019).
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the immediate short term benefits of income-generating child labour against children’s

future earning ability that increases in education (see e.g. Bar and Basu, 2009; Pal and

Saha, 2012; Dendir, 2014; Edmonds and Shrestha, 2014; Chakraborty and Chakraborty,

2018). This crucially depends on the current extent of deprivation, on the rate by which

parents discount the future, on whether they view their children’s future earnings as a

consumption smoothing mechanism for themselves (e.g. during old age), and also on their

altruism towards their children.20

Another extension is to model the role of markets. Baland and Robinson (2000),

Bhalotra and Heady (2003), and Dumas (2007) investigate how imperfections in the credit

and (adult-)labour markets could cause households to deploy relatively more or less child

labour. Basu et al. (2010) rely, in part, on the absence of functioning labour markets to

arrive at their inverted U-shape. Dumas (2013, 2015, 2020) characterises a whole range of

scenarios by selectively switching markets on and off one at a time and observing the effect

on child labour in her model. To date, the literature largely confirms the moderating effects

of labour markets and, less clearly so, the deferring effects of credit markets. Overall, child

labour theory has evolved into a framework, capable of analysing child labour in relation

to the wider micro-economic context that surrounds it.

Finally, the studies that are closest related to mine focus on the effects of external

shocks on such a system. Dumas (2015, 2020) uses rainfall as a shock on household pro-

duction in agriculture and, thus, indirectly on the households’ child labour supply deci-

sion. She finds that, in the case of Tanzania, child labour increases in rainfall and that

this increase is attenuated if the household has access to a well-functioning labour mar-

ket. Moreover, her findings indicate that credit markets are less effective in smoothing

such rainfall shocks. Manual labour provision can solve the household’s problem contem-

poraneously (harvesting or sowing before the crops rot or the ground dries up), whereas

consumption smoothing by credit only protracts costs into the future as long as the un-

derlying problem remains unsolved. Of course, access to credit is usually quite limited in

20Knowing that they may well die before the fruits of child education can be reaped, purely self-interested
parents may prefer sending their children to work and enjoy additional income presently.
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LMICs and particularly so among the poorest. Furthermore, there is only so much credit

a poor farming household can take up, assuming there is a functioning market, before it is

worse off than before. Lastly, climate change is neither idiosyncratic nor transient, which

makes it virtually impossible to insure against.

Boutin (2014) is the only paper to date which explicitly studies the link between

climate change and child labour. Boutin’s approach is, however, less direct than that used

in Dumas’ rain-shock study. She measures climate vulnerability rather than effectuated

climate change itself. Her independent variable is an aggregate of two indices that “take

into account the multidimensionality of climate change”(Boutin, 2014, p. 5); one index on

biophysical vulnerability defined over climate volatility, variability, landscape typology and

soil structure, and another index measuring a community’s adaptive capacities, which takes

into account diversification strategies, financial capacities, and community-level amenities.

One advantage of using such a composite index is that it overcomes potential endogeneity

problems:

Households whose income and assets are most vulnerable to climate damage will
benefit more from income diversification generated by child labour than other house-
holds. Consequently, they might be more likely to have a child working that can
smooth consumption in the event of a severe climate shock. This would also be the
case if risk-adverse households are more likely to have working children in order to
diversify income sources and are also more likely to invest in self-protection mecha-
nisms (Boutin, 2014, p.5).

Endogeneity of this kind aside, concerns about measurement error as well as the cross-

sectional nature of Boutin’s data still complicate causal inference. Her climate vulnerability

index is certainly a valuable contribution, especially when it comes to designing forward

looking adaptation policies. Much of the pertinent policy debate, however, centres around

quantifying the impacts of exposures to adverse effects of climate change rather than the

human response to an increase in vulnerability per se.21 Therefore, this paper focuses

on the effects of eventuated climate change - e.g., more frequent episodes of drought or

flooding and persistent shifts in mean temperature and precipitation - on child labour.

21On the attribution of a single event to climate change, see Hansen et al. (2014).
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Although Boutin’s metrics are different from the ones deployed here (vulnerability

towards climate change versus actual, exogenously apportioned exposure to its negative

effects), her findings provide a benchmark against which to compare the present study.

She finds that climate vulnerability negatively affects child labour incidence and intensity,

while it does not seem to have an impact on household chores. Thus, she concludes that

child labour is an adjustment variable to local labour market conditions but not correlated

with a given communities’ joint climate resilience (Boutin, 2014).

The identification approach in this paper is much closer related to the rain induced

shock used in Dumas (2020); I use multiple weather-component variables to shock the

system and relate them back to changes in the climate. To guide the empirical strategy

necessary, the next section provides a brief overview of the literature on climate change

and its effects on the socio-economic sphere.

2.2 Agriculture and labour supply

In the field of Agricultural, Resource and Environmental Economics (ARE) there is a long

history of using weather measures as explanatory variables in statistical models of agri-

cultural productivity (e.g. Fisher, 1925). The reason for this is simple: Setting labour,

machines, and fertilizer aside, the inputs to agricultural production are biophysical vari-

ables like soil nutrients, sunlight, rainfall, temperature, or pests. As such, a change in

weather affects them much more immediately than it would affect most inputs in other

sectors. But there are also considerable social and economic factors at play; Crop choice,

the use of fertilizers or pesticides, capital and machinery used to till and harvest, and

long-term planning of plot use rotation are all examples of human decision variables that

interact with the aforementioned physical ones. The exact form of these human-nature

interactions are subject to economic decision-making and depend on the farmers’ prefer-

ences as well as on their constraints, environmental and otherwise. Figure 1 schematically

depicts such a production process from the farmer’s perspective.

Labour supply depends in many ways on all the other factors to fall in place first: No

15



Figure 1: The farmer’s problem.

Note: At stage 1, the farmer observes relevant information, the realization of which is exogenous. Based
on this, the farmer apportions some land for planting a given crop. In stage 2, inputs enter the production
function (HYV = high yield variety). Inputs depicted by blue arrows are choice variables for the farmer,
green ones are not.
Source: Adapted from Auffhammer (2014).

additional harvesters are needed if, for example, a drought wipes out your crops before

they are ripe. It is this connection between the physical conditions for agriculture and

the human labour inputs to it, which may prove helpful for exploring the more specific

characteristics of child labour supply in that sector.

One consequence of the complex nature-human interactions that characterise agricul-

tural production is that the productivity of labour cannot be observed directly by the

executive farmer, even if he were to monitor all workers constantly. Indirect measures

of productivity, such as the number of tasks performed per worker, are also unavailable

for most of the productive cycle: At harvest, one can judge the amount of produce har-

vested per worker and, at planting, the quantity of seeds sown or the area of land covered.

Between planting and harvesting, however, labour productivity is not straight forward to

measure indirectly as growth and crop quality are mostly determined by environmental

factors. Since total production at the end of the harvest is a complex function of many

worker’s individual contributions and of the environment over time, individual workers’
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inputs cannot be easily disaggregated or compared. Thus an informational asymmetry

arises.

One result of this is the inverse relationship between a farm’s size and its productivity,

which was first noted in the case of India (Sen, 1962) and has since been evidenced in

LMICs across the world. The literature shows quite convincingly that - holding inputs

constant - small family owned farms are more productive than bigger enterprises (Sen,

1981a,b). There is disagreement, however, on whether this is due to the lesser extent of

moral hazard (e.g. shirking) among family members vis a vis wage workers22, or due to

the spatial dispersion of workers on bigger farms which drives up monitoring costs (Sen,

1981a). Either way, free-riding seems to be less of a problem on family-farms without

labour market connections.

On the other hand, labour markets are crucial for insuring against crop failure. Kochar

(1999) presents evidence suggesting that the smoothness of household consumption in the

presence of farm-specific crop income shocks reflects the ability of households to smooth

income directly, by increasing their market hours of work. This is an early pointer to

the important role that labour markets play in household consumption smoothing and,

consequently, its effects on child labour allocation discussed in Dumas (2015, 2020).

2.3 Economic effects of climate change

Since child labour is not prominently featured as a topic in the ARE, the importance of

this literature for the present study lies predominantly in providing a framework that can

link climate and weather to socio-economic phenomena like child labour.

Indeed, the relatively recent empirical literature on the economic impacts of climate

change has turned the spotlight onto quantifying the effect of climate on many different

socio-economic outcomes. Table 1 gives a non-exhaustive list of such studies. Most of them

report highly non-linear relationships between climate and the outcomes of interest (e.g.

22Household members have a direct interest in maximising farm output because their consumption is
directly dependent on it. Wage workers, on the other hand, can benefit from defecting behaviour as long
as output remains high enough so that a decline can credibly be attributed to solely environmental factors
and wages continue to be paid.
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Table 1: Selected climate impact studies from ARE Economics.

Paper Climate
Variables

Response
Variable

Agriculture Deschênes and Greenstone (2007) various yields (HIC)
Mendelsohn (2008) various yields (LMIC)
Schlenker and Roberts (2009) various yields (HIC)
Schlenker and Lobell (2010) various yields (SSA)
Welch et al. (2010) various yields (LMIC)
Lobell et al. (2011) various yields (globally)
Hertel and Lobell (2014) various yields (LMIC)

Macro/Trade Barrios et al. (2010) P growth (SSA)
Jones and Olken (2010) T, P exports
Hsiang et al. (2015) various aggregate output
Costinot et al. (2016) various trade advantage
Deryugina and Hsiang (2017) various aggregate output
Dingel et al. (2019) various trade inequality
Burke and Tanutama (2019) various aggregate output
Schlenker and Taylor (2019) various market outlook

Migration Feng et al. (2010) various yields, migration
Marchiori et al. (2012) various migration (SSA)
Cattaneo and Peri (2016) T migration
Missirian and Schlenker (2017) T migration

Health Deschênes (2014) various mortality rates
Isen et al. (2017) T (in utero) adult well being
Obradovich et al. (2017) T sleep
Burke et al. (2018) T suicide rates
Baylis (2020) T temperament

Warfare Hsiang et al. (2011) various conflict
Hsiang et al. (2015) various conflict

Energy Auffhammer and Mansur (2014) various electricity demand

Notes: Studies by subject areas, denoting the type of climate variables used (P=precipitation,
T=temperature, various) and the type of response variable for which the study controls. Location type
(HIC = high income countries, LMIC = lower and middle income countries, SSA=Sub-Saharan Africa)
provided where applicable. Note that climate variable types may indicate the use of more than one metric
pertinent to that climate component (e.g. mean, maximum, minimum,...).
Source: Author’s own compilation.

Schlenker and Roberts, 2009; Hsiang et al., 2015), and warm temperatures seem to be a

particularly relevant factor for many climate responses (Auffhammer et al., 2013).
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While the details differ, most of these papers roughly follow a two step procedure:

first weather data is merged with data on the outcome of interest as well as some control

variables. From this data set, a function describing the climate effect - called dose-response

function or damage function - is estimated. The relevant coefficients are often estimated

numerically due to the highly non-linear nature of climate effects. Once obtained, the dose-

response function is used to project future effects of climate change. To this end, climate

projections from a global climate model (GCM) are passed to the function. The function’s

output are then interpreted as the projected future values of the dependent variable.23

The related methodological literature, in particular Timmins and Schlenker (2009);

Schlenker (2010); Auffhammer et al. (2013); Hansen et al. (2014); Auffhammer (2018) and

Hsiang (2016), has developed a range of econometric strategies for estimating dose response

functions, forecasting, and drawing climate insights from weather data. My empirical

analysis in section 5 uses the framework of Hsiang (2016) in building a first bridge between

this empirically driven literature from ARE and the aforementioned literature on child

labour. Conceptually, rainfall, temperature, and other weather components are modelled

to be jointly drawn from an underlying distribution which is commonly called ‘climate’.

In order to model climate change and its effects, one must first define what exactly

climate is. We never directly observe climate. What people perceive in their immediate

environment is weather and it is weather, not climate, that has an immediate effect on

their lives. Hermeneutics complicate this distinction further: humans learn from repeated

experience, develop foresight, and adapt. As a result, weather can have direct and indi-

rect effects. Direct effects of rain, for instance, include getting wet or losing harvest due

to flooding. Analogous indirect effects are wearing a rain coat next time and installing

a drainage system to safeguard crops. Thus, direct and indirect effects of weather are

increasingly convoluted over time and space.

This distinction also exists, as immediate versus down-stream effects, in the Environ-

mental Impact Assessment (EIA) literature (see e.g., Noble, 2015). Furthermore, EIAs

23This approach by itself has been dubbed the “dumb farmer scenario” (Auffhammer and Schlenker,
2014), as it implicitly assumes that farmers continue business as usual despite climate change.
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distinguish between environmental changes and effects. Assuming that there is always

some level of change in the ecosystem, environmental effects are then those additional

changes induced by external shock to the system - the difference in differences. This broad

conceptualisation of all environmental effects, transitory or persistent, neatly encompasses

climate change.

The notion of human foresight about the weather is crucial as it suggests an implicit

characterisation of climate as a probability distribution. While we may not exactly know

ex ante what the weather will be at our position in a given future moment, we might have

accumulated prior expectations about the ‘usual’ extent to which precipitation, tempera-

ture, wind gusts, and other weather components tend to vary, about their typical transitory

pace, and even about the approximate probabilities attached to each possible state con-

ditional on the eventuated past and on the contemporaneous variance observed in other

related weather components.

In developing such expectations, humans display an approximate understanding of the

geophysical processes underlying the weather as they learn to appreciate the observable

interdependence structure across weather components induced by these processes. Contin-

uous observation of the weather is then equivalent to drawing independent random draws

from an underlying distribution. As long as this distribution remains unaltered, the accu-

racy of one’s expectations increases with the number of draws. Precipitation, for instance,

differs by temperature and we intuitively expect snow when the temperature falls below

zero degrees centigrade, but rain above that threshold. As long seasonal variation of tem-

perature stays constant, this enables long-term planning of all kinds of economic activity in

humans, as well as survival strategies in animals (e.g., hibernation) and plants (e.g., shed-

ding foliage) more broadly. Equivalent long-term strategies occur everywhere on planet

earth, always specifically geared towards the local climate.

Recent evidence from the United States shows that humans are surprisingly fast in cor-

recting their expectations to account for climate change. The subjective baseline against

which temperature is evaluated appears to be dominated by recent experience. In conse-

quence, “temperatures initially considered remarkable rapidly become unremarkable with
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repeated exposure over a roughly five year timescale” (Moore et al., 2019, p. 4909). This

rapid expectation adjustment relative to the pace of anthropogenic climate change has large

implications for the notability of temperature anomalies as climate change progresses.24 It

also means that the two-fold effects of the static climate distribution - on effectuated

weather and on people’s expectations about it respectively - may carry over to the non-

static setting with climatic change quite seamlessly. The following model is geared towards

giving a first intuition as to what happens to child labour as climate change progresses. It

is followed by an empirical exploration.

3 Model

The model presented in this section draws from Jessoe et al. (2018). Their model, in turn, is

a version of the standard agricultural household model (Singgh et al., 1986) with weather

as an additional production factor (as in Ravallion, 1988). In this class of models, the

household solves the production and consumption sides simultaneously, resembling their

dual role as producers and consumers.

Two additional extensions are necessary in order to adapt this framework to the analy-

sis of child labour. First, the household’s aggregate utility function, which is left unspecified

in Jessoe et al. (2018), should exhibit child labour aversion in line with the luxury axiom

(Basu and Van, 1998). Secondly, the effective labour input L must be disaggregated into

child and adult labour. Furthermore, the functional form of adult-equivalent child labour

units needs to be specified in order to accommodate complementarity and appropriately

scale total time input according to the differences in productive capacity between child and

adult labour time units. Following some preliminaries, I implement these extensions and

solve the household’s utility maximization problem.

24Notably, this attenuating presence-bias surrounding human perception of extreme weather may inhibit
societal pressure for climate change mitigation efforts.
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Preliminaries: The ILO’s International Programme on the Elimination of Child Labour

(IPEC) defines child labour as

work that is mentally, physically, socially or morally dangerous and harmful to chil-
dren; and that interferes with the children’s schooling by depriving them of the
opportunity to attend school, either by obliging them to leave school prematurely,
or by requiring them to attempt to combine school attendance with excessively long
and heavy work (ILO, 2021).

Because the various components of this definition are often hard to establish in practice,

age is commonly used as a proxy by which to distinguish benign work from child labour.

The ILO’s Convention No. 138 stipulates the relevant ages that different countries use

to define child labour. In applied work, therefore, the age threshold needs to be adjusted

to the relevant country context, with the upper limit at eighteen years in any case. In

formulating a theoretical model, such an adjustable age threshold can be implemented on

any household’s age-ordering. Consider an agricultural household I = {1, 2, ..., I} whose

I > 0 members are ordered from youngest to oldest. Let ai be the age of household member

i ∈ I. Moreover, let a be the legal age at which an individual is no longer considered a

child. Accordingly, i is a child if ai < a and an adult if ai ≥ a. Let ı̂ denote the oldest

child in the household. The household can, accordingly, be divided into ı̂ children and I− ı̂

adults.

Every member of the household is endowed with time, normalized at 1. By assumption,

the I− ı̂ adults work all of the time, while the ı̂ children’s time is divided between e ∈ [0, 1]

time units of work effort on the household’s farm and (1 − e) time units of non-work.25

For simplicity, the effort e is assumed to be equal for all children.26 Note that aggregate

time endowment up to a given individual is equal to the number of individuals it has been

aggregated over. For example, the aggregate time endowment of adults in I is (I − ı̂).
25This non-work may involve going to school as well as leisure. This difference is of no consequence in

this static setting. Of course, in an intertemporal maximization exercise - as part of a dynamic model -
the consequences of deciding between education and leisure will have a tangible effect on the accumulation
of human capital and associated earning capabilities.

26While this assumption does not impact the model’s implications, it considerably decreases the com-
plexity involved in solving it. Some possible extensions - allowing for e to vary across children - are
discussed in annex A.1.
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Household preferences: Household I derives utility from the consumption of generic

goods and services, which are denoted by c. Additionally, the household’s decision makers

are averse to child labour, as long subsistence consumption levels can be reached without

it.

The following Stone-Geary utility function27 with an additional child-leisure factor

captures this trade-off (cf. Basu and Van, 1998).

U(e, c) = (c− s)(1− e), (1)

where, s is the subsistence level of consumption and the second term on the right hand

side captures children’s non-work. Basu and Van (1998) note that the specific form of

this utility function implies “that the child’s leisure is a luxury good because doubling the

household’s wealth (from non-child-labour sources) leads to a more than doubling of child

labour”(p. 420, footnote 11). This is the implementation of their luxury-axiom.

Labour equivalence: Children tend to be less productive than adults. In agriculture,

this stems from differences in physical strength, skill-refining experience, ability to manage

equipment, and other productive traits - all of which favour adults.28 It is common practice

to multiply child labour with an adult-equivalence factor between 0 and 1, making it an

imperfect substitute for adult labour (Basu and Van, 1998; Baland and Robinson, 2000;

Bhalotra and Heady, 2003; Basu et al., 2010; Dwibedi and Marjit, 2017; Dumas, 2020).29

27This functional form is commonly used to model subsistence levels into expenditure systems. Stone
(1954) first estimated the linear expenditure system associated with it and Geary (1950) was the first to
derive it in theory, in a comment on earlier work by Klein and Rubin (1947). Therefore, it is also known
as Klein-Rubin utility function.

28The opposite is true when a productive activity requires specific characteristics that are more readily
available in children. One particularly cruel example is mining in confined underground spaces, where
children’s small size allows for easier access and faster extraction of precious ores while minimising drilling
costs (see e.g. O’driscoll, 2017).

29Similar household equivalence scales are commonly used in estimating household consumption systems,
with children (the elderly) consuming a fraction (multiple) of adult consumption. For reference, see Pollak
and Wales (1979), Lewbel (1989), Blundell et al. (1994), Lewbel (1997), or Deaton (1999). While they are
increasingly considered to be overly simplistic, equivalence scales are used in more involved methods, like
the one presented by Dunbar et al. (2013).
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In a similar fashion, let the full labour supply of household I be

L = (I − ı̂) + γı̂e, (2)

where the positive parameter γ ∈ [0, 1] defines the adult-equivalent productive capacity of

child time allocated to farm work. That is, one child hour of farm work produces the same

marginal returns as γ (< 1) hours of adult farm work. To further limit the model’s com-

plexity, this adult-equivalence parameter is assumed to be the same across children. Some

possible extensions that allow it to vary by children’s individual characteristics (e.g. age,

sex, or prior work experience) as well as in relation to parental supervision are suggested

in annex A.2.

Agricultural production: Agricultural goods are produced using labour L and quasi-

fixed land and capital K̄. The quantity produced is given by Q = f(L, K̄, θ). As in

Ravallion (1988), the factor θ represents the realisation of weather, a higher value of which

indicates weather that increases production. f(·) is a continuous and twice differentiable

production function for which the following four inequalities hold:

∂f

∂L
> 0,

∂f

∂θ
> 0,

∂2f

∂L2
< 0, and

∂2f

∂L∂θ
> 0. (3)

Household problem: Household I is a price-taker in all markets. Formally, the house-

hold’s problem is to maximise its utility, described in equation (1), subject to its budget

constraint

(I − ı̂)c+ ı̂βc = f(L, K̄, θ), (4)

where β ∈ [0, 1] is the adult-equivalent of a child’s consumption.

Note that this formulation builds on one more, rather strong assumption; the household

is assumed to live in autarky, consuming the entirety of what it produces and nothing more

or less. There are no functioning labour markets, where household members could either

sell their own labour for wages or contract external labourers, nor consumer good markets

24



for the household to trade its produce for money and supplement their consumption by

buying externally provided goods and servies.

While assuming this extreme form of economic isolation may be warrented, to some

extent, for subsistence farms in remote rural areas, it clearly does not hold for many other

environments where children commonly work. The implications of labour, credit, and

goods markets on child labour have been explored thoroughly in the literature (see e.g.,

Baland and Robinson, 2000; Bhalotra and Heady, 2003; Dumas, 2013, 2015, 2020). I limit

my analysis to the state of autarky and focus, instead, on the impacts of climate change.

Using Lagrange’s method, and denoting the lagrangian multiplier as λ, the utility

maximization problem yields the Lagrange function

L(c, e, λ) = (c− s)(1− e)− λ
[
(I − ı̂)c+ ı̂βc− f(L, K̄, θ)

]
. (5)

The first order conditions, obtained by taking the partial derivative of L with respect

to the three choice variables and setting them equal to zero, yield an exactly identified

system of three equations with three unknowns. Solving this system for c and e gives the

following identities.30

c =
f(L, K̄, θ)

(I − ı̂) + βı̂
(6)

and

e = 1 +
s((I − ı̂) + βı̂) + f(L, K̄, θ)

γı̂f ′L
. (7)

In equation (7), the term f ′L is a short hand for

∂f(L, K̄, θ)

∂L
,

which is known to be strictly positive from the curvature assumptions formalised in equa-

30This system can be solved either with pen and paper or on a computer. A python script for this
purpose is available at www.github.com/mathiasweidinger/MPPTH/.

25

https://github.com/mathiasweidinger/MPPTH


tion (3) above.

Equation (6) merely tells us that individual consumption is derived by dividing the

households agricultural production by its member’s adult-equivalent consumption needs.

Equation (7), on the other hand, shows that children’s time effort working is increasing in

the household’s combined subsistence levels and in the household’s production function.

The fact that household production, itself, increases in weather means that a weather shock

directly affects child labour supply. The direction of this effect on e depends on the sign

of the cross-derivative of output with respect to labor and weather.

In other words, child labour effort increases with weather that is “good” for production

and decreases with weather that is “bad” for it. This means that no one variable’s effect

should be expected to be monotone; either consistently positive or negative. Rather, very

low or high levels of precipitation or temperature will have negative effects on plant growth

and, thus, on production while temparate weather should facilitate plant growth and enable

production. For instance, rain is generally conducive to production but floods or droughts

are not.

In terms of climate change, this would suggest that the direction of a sustained shift in

weather patterns would also indicate the direction of the resulting shift in child labour. If,

as most projections suggest, climate change has adverse effects on agricultural productivity,

this result projects a decrease in child labour as a result of climate change.

Of course, the omission of labour markets strongly limits the real life relevance of this

model. While negative weather shocks tend to lead to a lesser harvest and, thus, to less

labour demand during that stage of production, it is not at all clear wether this will result

in more or less child labour. Likely, a sustained decrease in production would have an

income effect which, over time, could make it prohibitively expensive to contract external

labour for harvesting, sowing, and other activities. If that is the case, the effect of climate

change may well be more child labour.

The next section investigates empirically the effect of climate change on child labour

in the case of Nigeria. Negative climate coefficients31 would indicate that the model above

31In the sense that coefficients should be negative for those variables, which are expected to have a
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is useful in explaining child labour supply in subsistence agriculture. In the opposite case,

labour-market effects - which are omitted above - may be dominant.

4 Case selection and data processing

Nigeria is the most populous and the sixth-most densely populated country in Africa32, and

its 2020 nominal GDP of USD 450 billion makes it the biggest economy on the continent

(World Bank, 2021).33 About half of the population live in urban areas, particularly the

large metropolitan areas in the South and Southwest towards the country’s coast on the

Gulf of Guinea. Moving North, the population density decreases gradually, giving way to

wide savannahs and steppes which are characterised predominantly by agriculture.

Nigeria exhibits some characteristics which make it a particularly well-suited case study

in the context of this paper. First, while exact estimates are hard to come by, it is generally

acknowledged that child labour is rampant. The US Department of Labor (2021) estimates

that 13 million children work on a regular basis. In May 2019, the ILO’s Country Office

Director stated publicly that at least 43 percent of Nigerian children - 15 million - were

trapped in forced, largely unpaid labour (ILO, 2019). This is double the SSA average,

which itself is the highest regional average in the world. While child work is also common

in other sectors, such as domestic servitude or gold mining, the vast majority of working

children are employed on their families’ farms.

Second, Nigeria exhibits high levels of (rural) poverty and socio-economic inequality.

Although it is one of the fastest-growing countries in the world, almost half of its population

still grapples with extreme poverty. With a Gini index of 35, income inequality lies close

to the SSA average. This shows a highly uneven distribution of wealth between many poor

and very few rich households. According to the most recent national report, 40 percent of

the total population, or almost 83 million people, lived below the country’s poverty line

of 137,439 Naira (USD 381.75) per person per year. While most wealth is located in the

negative effects on the agricultural production function.
32With a population of 200 million, Nigeria is also the sixth-most populous country in the world.
33In terms of purchasing power parity, only Egypt narrowly outperforms Nigeria.
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big metropolitan areas such as Lagos, Ibadan, and Abuja, poverty is both more prevalent

and deeper in rural areas, where the headcount is above 50 percent and the poverty gap

amounts to 17.4 percent of the poverty line on average in contrast to the four percent

observed in urban areas (NBS, 2020).

The simultaneous concentration of (extreme) poverty and rampant child labour in ru-

ral areas closely resembles two key assumptions of the model derived in section 3: the

luxury axiom, expressed by the subsistence terms in the Stone-Geary utility function, op-

erationalises the assumption that poverty is the principle driver of child labour. The agri-

cultural focus of most households’ economic activity further suggests that a large enough

subpopulation engages in agricultural child labour specifically. Taken together, these facts

mean that Nigeria provides a highly relevant and suitable case to study empirically.

4.1 Climate and agriculture in Nigeria

Nigeria’s climate can be divided into two main seasons: “dry winter from November to

March, and rainy summer from April to October”(Shiru et al., 2019, p. 61). Beyond

seasonality, Nigeria’s climate is characterised by differences in humidity, which varies by

latitude as shown in figure 2. The country’s northernmost fifth is covered by arid steppe and

desert (red and yellow), whereas the remaining southern portion displays a humid tropical

climate (shades of blue); savannahs in the center and some monsoon and rainforest climates

in the southernmost regions.

Partly on account of its geography, Nigeria produces a wide variety of crops. Data

shows that most farmers “are involved in more than one agriultural activity, even though

at varying degrees” (NAERLS, 2015, p. 99). At 99.1 percent of surveyed farmers, however,

virtually every agricultural household grows at least some food crops for household con-

sumption, whereas only 52 percent reported growing cash crops. This statistic emphasizes

the role of subsistence agriculture in providing food security across the country.

Agriculture varies regionally, closely tracing the climatic differences outlined above.

The most important food crops include Corn, Sorghum, Millet, Rice, Cassava, Yam, Co-
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Figure 2: Climate zones of Nigeria.

Notes: Köppen-geiger climate classification at 1-km resolution. Source: Beck et al. (2018).

coyam, Groundnut, Cowpea, and Soybean. The drier northern areas mostly produce cereals

and variety of crops increases southwards. While some crops are confined to particular cli-

mates, others are grown across the spectrum. Shiru et al. (2019) study the distribution

of several crops across Nigeria’s climate zones and note that, while both Corn and Rice

are grown throughout the country, their growing season in the North differs from that in

the South. This is perhaps best explained by the seasonality of rainfall in the otherwise

dry Northern regions. In total, Shiru et al. (2019) provide an approximate calendar of

cropping seasons for five crops, which gives insight into the yearly agricultural cycle from

sowing, thru growing, to harvesting (see figure 4 below). Yams total a growing season of

up to eleven months, being planted as early as February thru April and harvested as late

as October thru December. Millet, which only grows for five months (May to September)

at most, has the shortest growing season, closely followed by corn. January is the only

month during which the agricultural cycle lays completely dormant; the last harvests seize

in December and planting starts in late February and becomes more frequent throughout

March, April and May.

This brief overview of the climatic and agricultural characteristics of Nigeria provides

the necessary context for the data that I introduce next. The extent of the growing seasons,

for instance, informs the temporal units of the panel data used in the analysis and dictates
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how to process relevant climate variables. The following section discusses the sources of

this data and how they were selected.

4.2 Data sources

Analysing the prevalence of child labour as a function of climate change must involve at

least two types of data: weather observations and individual-level work data for children.

In order to control for possible confounders, other individual and household characteristics

should be added. A last and absolutely vital requirement is, of course, that all these data

are geo-coded in accordance with a coordinate reference system (usually degrees of latitude

and longitude) so that they can be matched. This study relies on two data sources to meet

these requirements.

First, the individual and household variables are provided by the Nigeria General

Household Survey (GHS), which is part of the World Bank’s Living Standards Measurement

Surveys (LSMS) programme and is conducted by Nigeria’s National Bureau of Statistics

in collaboration with Nigeria’s Federal Ministry of Agriculture and Rural Development,

the National Food Reserve Agency, the Bill and Melinda Gates Foundation and the World

Bank. GHS is an ongoing long-term project to create a growing panel of agricultural

and household data in such a way as to allow the study of agriculture’s role in household

welfare over time. It collects information on household agricultural activities along with

other information on the households like human capital, other economic activities, and

access to services and resources.

The GHS-Panel lends itself extremely well to this paper’s research question thanks to

its succinctly agricultural focus. To date, the survey instrument has produced four waves

(2010-2011, 2012-2013, 2015-2016, 2018-2019), the first three of which are used in this

analysis. The decision to omit the most recent wave in this analysis was taken due to

what seems to be non-random attrition of households after wave 3, concentrated in rural

areas. Each wave of the GHS-Panel is a cross-section of approximately 22,000 individuals

in approximately 5,000 households which are representative of the Nigerian population at
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large. Each GHS wave consists of two visits, one at the end of the planting season, between

September and November, and the other at the end of the harvest, February thru April

of the following year. Thus, the final panel consists of six, approximately biannual cross

sections.

The most relevant parts of the GHS panel are the individuals’ labour information (e.g.,

hours worked, wages earned, sectoral information, and time spent on household chores),

agricultural plot and production information by household, as well as the more general

socio-economic standing of the households and their individual members. This includes

education, which is of particular interest as it may compete with child labour for children’s

time allocation. Apart from its agricultural focus, what sets the GHS apart is the decision

by its creators to include approximate spatial coordinates of the enumeration areas (EA)

where the households are located.34 This allows users to spatialise the dataset and combine

it with other data sources according to the coordinates attached.

I spatialise the GHS panel dataset and combine it with climate data. Version 4.05

of CRU TS (Climatic Research Unit gridded Time Series) is a widely used global climate

dataset. It is derived by the interpolation of monthly climate anomalies from extensive

networks of weather station observations.35 CRU TS 4.05 includes ten timeseries of geo-

physical variables that jointly depict the development of the world’s climate at a monthly

interval. This data, which is available from January 1901 to December 2020, is laid out on

a 0.5° latitude by 0.5° longitude grid (approximately 50 kilometres by 50 kilometres cells)

across all major land masses (except Antarctica). This high resolution allows capturing a

great part of cross-community climate variation between EAs.

4.3 Variables

This section describes the main variables used in the analysis and how they were con-

structed.

34EAs are the smallest geographical partition present in the GHS, approximately equivalent to a commu-
nity or a cluster of villages. Other, higher order units are equivalent to Nigeria’s administrative divisions
of Legislative Government Areas (LGA), provinces, and regions.

35For detail on how CRU TS was constructed, see the accompanying publication (Harris et al., 2020).
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4.3.1 GHS variables

The survey recorded the “hours worked last week in a job”, as well as the “minutes spent

on chores yesterday”. In order to streamline the time-frame of these two variables, the

hours worked in a job are divided by seven and the minutes spent on chores are divided by

sixty. Adding up the two results for every individual gives their daily work hours including

chores.36 Lastly, I filter the variable by age and set it to missing for individuals aged 18

or above. The final result is an approximate measure of daily hours spent in child labour

including chores.37 Other variables which are taken more or less unaltered from the GHS-

panel38 are household consumption, household size, sex, and age.

To assess the welfare of a given household, a multidimensional poverty index (MPI) is

constructed, closely following the approach spearheaded by Alkire and Foster (2011) and

most recently applied globally in Alkire et al. (2020). I try to retain the same dimensions,

indicators, and relative weights used in Alkire and Jahan (2018); Alkire et al. (2020),

subject to data availability in the GHS. Each of the indicators used is related explicitly to

one or more of the SDGs.39 Multidimensional indices are particularly attractive because

they can be disaggregated (Bourguignon and Chakravarty, 2003; Foster et al., 1984), in

addition to fulfilling the properties usually required by poverty metrics (see Sen, 1976).40

The health dimension is comprised of two indicators. Nutrition, which is related to

SDG 2 “Zero Hunger”, codes a household as deprived if there was a situation in the last 12

months when there was not enough food to feed the household members. Child mortality

is measured by the number of male and female children, born to women between 12 and

36Note that this often yields non-integer values due to the conversion of the chore variables from minutes
to hours. Moreover, this construction relies on the assumptions that (i) last week’s workload is represen-
tative for the overall workload, and (ii) that yesterday’s chore minutes are representative of every day’s
time spent on chores.

37Alternative measures can be obtained, for instance by omitting the chores component or by filtering
out observations outside the agricultural sector. All these alternative measures turn out to be virtually
equivalent with correlations among them and the original variable ranging between 0.92 and 1. Since the
additional constraints do, however, cost observations I proceed with the initially proposed variable.

38In some cases, they were recoded to subsume many categories into one or to facilitate interpretation
of results.

39For a recent application to the SDGs, see the joint publication by OPHI and UNDP (2020).
40For a critical review of the MPI literature, see Ravallion (2011).
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49, who died in the household. If this number is, on average across the household’s eligible

females, 1 or greater the household codes as deprived. Child mortality relates directly to

SDG 3 “Health and Wellbeing”. Both measures are equally weighted 1/6 each so that

health accounts for a third of the MPI.

The education dimension also consists of two indicators. Years of schooling codes a

household as deprived if no eligible household member has completed six years of schooling.

Second, a household is deprived in terms of school attendance if any of its school-aged chil-

dren is not attending school at the age-appropriate level up to class eight. Both education

indicators are clearly related to SDG 4 “Quality Education”. Again, each of the education

indicators is weighted 1/6, giving education a total weight of 1/3.

The last dimension of poverty is living standards, measured by six variables which are

each weighted 1/18. A household is deprived in cooking fuel, if it cooks using solid fuel

such as dung, agricultural crop, shrubs, wood, charcoal, or coal. In terms of electricity, a

household is deprived if it has no electricity in the home. Both cooking fuel and electricity

are central to SDG 7 “Affordable and Clean Energy”. Sanitation deprivation occurs if a

household has no or only an unimproved sanitation facility, or if it has an improved facility

but shared with another household. A household is coded as deprived of drinking water if

its source of drinking water is not safe for human consumption or if safe drinking water is

30 minutes or longer away by foot (round trip). Both sanitation and drinking water are

basic needs acknowledged in SDG 6 “Clean Water and Sanitation”.

In relation to SDG 11 “Sustainable Cities and Communities”, a household is deprived

in housing if it has inadequate housing materials in any of the three components floor,

roof, or walls. Lastly, a household is considered asset deprived if it does not own more

than five of the these: sofa, chairs, table, mattress, bed, mat, sewing machine, gas cooker,

electric stove, gas stove, kerosene stove, fridge, freezer, air conditioner, washing machine,

electric clothes dryer, bicycle, motorbike, car or other vehicle, generator, fan, radio, cassette

recorder, Hi-Fi sound system, microwave oven, iron, television set, computer, DVD player,

satellite dish, and musical instrument. The indicator of asset deprivation is related to SDG

1 “No Poverty”.
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4.3.2 Climate variables

The ten different geophysical variables of CRU-TS can be further categorised as primary,

secondary, and derived variables. Primary variables are those that are directly measured

at ground station level and have no synthetic component. They are mean temperature

over two months (TMP), diurnal temperature range over two months (DTR), and the

precipitation rate (PRE).

Secondary variables differ from primary variables in that they have fewer direct ob-

servations available. The synthetic estimates are estimated using empirical relationships

with the primary variables. Vapour pressure (VAP) is generated from TMP, and DTR as

described in Harris et al. (2020). The count of wet days (WET) is defined as the number

of days in a month on which PRE ≥ 0.1 millimetres - a metric used in diverse areas in-

cluding evaluation of satellite observations and of potential evapotranspiration equations.

It is compiled using the same interpolation algorithm as in Harris et al. (2014). Synthetic

cloud cover observations (CLD) are computed from DTR as in Harris et al. (2014), using

station-based values. CLD is the percentage of cloud coverage averaged over the month.

Derived variables are entirely synthetic as their values are imputed from the observed

values using empirically validated formulae. Minimum and Maximum temperature over two

months (TMN and TMX) are derived arithmetically from TMP and DTR as described

in Harris et al. (2014). Both are useful metrics, for instance for monitoring droughts,

agronomic production and river basin vegetation. Freezing days per month (FRS) is the

number of days in a month that record TMN ≤ 0 degree Celsius. It is derived from TMN

using an empirically determined function and is commonly used in dendroclimatology and

health. Lastly, potential evapotranspiration (PET) is calculated from TMP, VAP, and

CLD using the Penman-Monteith formula (Allen et al., 1998), the United Nations Food

and Agriculture Organization’s (FAO) standard method for modelling evapotranspiration,

as explained in Ekström et al. (2007, pp. 1071 - 1072). PET is defined as the amount of

evaporation from the ground into the atmosphere that would occur if a sufficient water

source were available. It is an important variable with regards to agriculture as it directly
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Table 2: CRU TS variables.

Variables Code Units CDD(km)
Primary

Mean 2m temperature TMP degrees Celsius 1200
Diurnal 2m temperature range DTR degrees Celsius 750
Precipitation rate PRE mm/month 450

Secondary
Vapour pressure VAP hPA 1000
Wet days WET days/month 450
Cloud cover CLD percentage 600

Derived
Frost days FRS days/month 750
Minimum 2m temperature TMN degrees Celsius 1200
Maximum 2m temperature TMX degrees Celsius 1200
Potential evapotranspiration PET mm/day n/a

Notes: A wet day is one receiving ≥ 0.1 mm precipitation. Minimum and maximum temperatures are
the monthly means of the individual daily minimum and maximum temperatures; they are not the overall
minimum or maximum temperature recorded each month.
Source: Adapted from Harris et al. (2020).

affects plant growth. If PET exceeds PRE, a place is considered dryland.

Table 2 shows the variables of CRU TS, their units and their correlation decay distances

(CDDs). A variable’s CDD is defined as the distance where the correlation between one

station and all other stations decays below 1/e. The search radius for the selection of

stations for the interpolation in CRU TS is set equal to the CDD as this optimises accuracy

(Harris et al., 2020). In other words, CDD is the distance between a station and a grid

cell beyond which a station’s raw observations are not useful for interpolating the climate

variable at the cell. Generally speaking, precipitation has a rather low CDD as it is highly

spatially concentrated, whereas temperature and vapour pressure usually vary over greater

distances.
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4.4 Point value extraction from the 2D grid

The spatial scale of the CRU-TS data is laid out on a grid of 0.5 by 0.5 degrees according

to the standard (viz. longitude and latitude) coordinate reference system. That means

that CRU-TS has two-dimensional spatiality. The GHS data, on the other hand, is made

up of observations at distinct (one-dimensional) points on the same standard coordinate

reference system. These geo-code the location of the households present in GHS. For each

of these locations, a one-dimensional value needs to be extracted from the two-dimensional

CRU-TS grid.

For every EA in the GHS dataset, I compute the location-specific timeseries for every

climate variable in CRU TS 4.05. To smoothen transitionary differences between climate

cells, every EA’s climate variables are obtained by taking a weighted average of all the

(two-dimensional) cells which fall within a circular buffer of, for instance, 20 kilometres

around the (one-dimensional) EA’s centroid coordinates. This computation increases the

accuracy of the climate data further, mirroring the resolution of EAs by averaging over two

or more cells. Therefore, depending on the length of the circle’s radius and the resolution

of the climate grid, the climate variable’s value at the EA coordinates is the weighted mean

of one or more grid cells’ values.41

To consider this formally, let a circle with radius rit be drawn around a household

i’s position on each temporal layer grid t = {1, 2, 3, . . . , T}.42 Let Ait be the total area

enclosed by said circle. Let nit = {1, 2, . . . , Nit} denote the Nit grid cells which fall, at

least partly, within the circle’s area Ait. Each nit’s portion within the circle has an area

of a(nit) ≤ Ait. Moreover, write the climate in grid cell nit as c(nit). Now the value of the

climate variable at household i during time t is approximated by

cit ≈
Nit∑
nit=1

a(nit)

Ait
c(nit). (8)

41It is not necessary to weigh this sum by CDD, because the radius of the buffer should be smaller than
any variable’s CDD by an order of magnitude.

42The midpoint circle algorithm is one of many digital circle generation algorithms that can be used to
determine the points needed for rasterizing such a circular buffer (see, e.g., Barrera et al., 2016).
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Figure 3: Smoothing climate variables using a circular buffer

Note: Time series of climate variables take the form of three dimensional “stack” of coordinate grids, one
for each timepoint. Each of these grids is composed of cells. Every cell, in turn, holds the measured value
of the variable within its spatial limits at the grid’s time point. The three dimensional grid stack on the
left has the following axes: latitude from North (N) to South (S), longitude from West (W) to East(E),
and discrete time in monthly intervals (T). Every grid’s cells are coloured in shades of green that indicate
the value of the climate variable on a continuous scale (e.g. monthly mean temperature in degrees celsius).
The red dots represent the EA locations from the spatialised GHS data. Around every EA centroid, a
circular buffer with radius r = 20 kilometres is drawn. The exact value at the EA’s location is then
imputed by taking the weighted average of the cell segments (in order of size) B, A, C, and D that fall
within the buffer, weighted by their respective surface areas.
Source: Author’s own compilation.
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Figure 3 is a schematic representation of this procedure as applied to the data. I chose

a radius of 20 kilometres for the circular buffer, which is far enough to allow for mixing

of different grid cells, but lies well within the variables’ CDDs. As there are no missing

values in CRU TS, ten full monthly time series (one per variable), covering 1999-2020, can

be created for each household.43

5 Econometric strategy

To identify the causal effect of climate on child labour hours, Hsiang (2016) prescribes

that a panel data model with fixed effects (FE) is needed, as it accounts for unobserved,

time-invariant variables. The regression in question can be represented by the usual linear,

unobserved effects model (see e.g., Wooldridge, 2010): for any child i and time t,

yit = αi + ciτβ + xitγ + εit, (9)

where cit is the vector of climate variables and β is the vector that includes the coefficients

of interest. Moreover, xit includes control variables at the individual and household level,

the effects of which are captured by the vector γ. αi denotes the unit-specific fixed effects

and absorbs the effects of time-invariant factors, including unobservables. Lastly, εit is the

idiosyncratic error term.

Huntington (1922) was perhaps first to note that this approach lends itself to estimating

climate effects. In Equation 9, the climate variables are taken to be observed at the same

time intervals t as child labour. However, the CRU-TS data is recorded monthly, whereas

child labour (like all other GHS variables) occurs biannually. The next paragraphs closely

trace Hsiang (2016) in recovering instantaneous effects from coarser data. They also extend

the flexibility of the estimated climate effects.

43For implementing this in the R statistical programming language, see the buffer option of the extract
command from the R-library raster (Hijmans, 2020) and its successor terra (Hijmans, 2021).

38

https://cran.r-project.org/web/packages/raster
https://cran.r-project.org/web/packages/terra


5.1 Recovering local and instantaneous non-linear effects

The existing literature suggests that there is some value in letting the climate variables

enter the regression using a flexible functional form. This flexibility is justified for the fol-

lowing reasons: first, prior work estimating the effects of climate metrics has documented

important non-linearities across a wide array of responses (Carleton and Hsiang, 2016)

such as excess mortality from heat days (Deschênes and Greenstone, 2011) or crop yield

damage from heat hours(Schlenker and Roberts, 2009); second, an appropriate flexible

functional form should reveal the shape of the underlying response function, linear or oth-

erwise (Hsiang, 2016); and third, it makes intuitive sense that plant-growth - the yield of

which constitutes the physical output of household production - exhibits an optimal set of

climate inputs, below or above which growth will be less than optimal. In fact, agricultural

experiments show “that below (and above) certain thresholds, plants cannot absorb (ad-

ditional) heat, while within the bounds of an upper and lower threshold heat absorption

increases linearly with temperature”(Jessoe et al., 2018, p. 239). Thus, agronomic studies

suggest that accumulated exposure to heat over the growing season, rather than seasonal

averages, determine crop growth. This also strongly suggests that responses are non-linear.

Following the approach presented in Hsiang (2016), let the instantaneous non-linear

effect of climate for a household i in month τ be f(ciτ ), and let this function be approxi-

mated as a linear combination of M simple non-linear functions, so that

f(ciτ ) ≈ β1f1(ciτ ) + β2f2(ciτ ) + · · ·+ βMfM(ciτ ) =
M∑
m=1

βmfm(ciτ ), (10)

where βm are constant coefficients.

One common approach to model these non-linear responses is to fit M polynomials

to the data. However, polynomials of degrees higher than three are not straight-forward

to interpret.44 An alternative to increasing the degree of the fitted polynomial to account

44A linear model represents a system with a constant rate of change, a quadratic model a system with a
rate of change that increases or decreases at a fixed rate (the acceleration), and a cubic model represents
a system in which the acceleration changes at a constant rate. Similar correspondences do not exist for
higher order polynomials.
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for curvature is to divide the range of the data into smaller pieces and apply polynomials

of lesser degree to each of the subintervals, stipulating that the resulting function be

continuous (see e.g. Greene, 2018, pp. 275- 279). However, the use of such truncated

polynomials can sometimes lead to numerical problems.45 These problems can be avoided

in practice by using a different set of functions in place of the truncated polynomials.

There exist several sets of functions which produce the same range of fitted curves,

called equivalent bases (Hastie and Tibshirani, 1987; Hastie et al., 2009). One commonly

used variant are B-splines.46 I use a natural cubic B-spline with knots at equally spaced

interior points to achieve a flexible functional form. The spline divides the climate variables

into five bins (i.e. M = 5) according to the data’s percentiles and fits the equivalent of a

cubic function to each segment. This offers a non-linear alternative to using the climate

data as is.47

To address the difference in frequency between the GHS and CRU-TS data, let τ as

used above denote the monthly interval of the CRU-TS data and write the biannual GHS

frequencies as t. Assuming that the outome of interest is a linear sum of f(·) across points

in time (i.e., temporal separability), the regression in Equation 9 can be rewritten as

yit = αi +

[∑
τ∈t

f(ciτ )

]
+ xitγ + εit. (11)

Substituting the approximation from Equation 10, this becomes

yit ≈ αi +
M∑
m=1

βmf̄mit + xitγ + εit, (12)

45If two knots are very close then the associated truncated polynomial terms will be very similar for all
observations, almost co-linear, and the fitting algorithm will become unstable. Additionally, the values in
the design matrix can be very large which can lead to overflow errors (see e.g., Hastie et al., 2009).

46Although any function that can be fit with the truncated polynomials can also be fit with B-splines,
and vice versa, the B-spline basis functions are not colinear making the computational algorithms for
fitting splines much more stable.

47This and other approaches to model non-linearity are considered in more detail by Hsiang (2016, p.
18-19).
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where f̄mit is the unit-specific sum of B-splines over time τ ∈ t, that is

f̄mit =
∑
τ∈t

fm(ciτ ). (13)

Equation 12 can be estimated with a linear regression, using data at the monthly (t) level.

Doing so, thus, “recovers estimates for βm describing the local and instantaneous function

f(·), even though it uses coarser data” (Hsiang, 2016, p. 19).

The correspondence between months τ and half years t can be inferred from figure 4,

which overlays the cropping schedule presented in Shiru et al. (2019) with the surveying

windows of the GHS, as described in the accompanying technical documents (NBS, 2020).

From figure 4 it is clearly visible that the agricultural growing season lasts approx-

imately from March to December, leaving January and (most of) February outside the

yearly crop cycle.

Figure 4: Cropping seasons for selected crops of Nigeria.

Notes: The cropping schedule published in Shiru et al. (2019, p. 62) is overlaid with the surveying schedule
of the General Household Survey. The time windows during which post-harvest and post-planting visits
took place are indicated by the crosshatched areas.
Source: Shiru et al. (2019, p. 62) and NBS (2020).

In the following empirical exercise, the climate variables PRE, TMN, TMX, and TMP
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48 are passed to the spline function in equation 13 for months τ in the bi-annual time

intervals t of the child labour outcome variable. Table 3 shows the correspondence of these

two temporal scales for all six GHS visits (three waves) used. In fact, what NBS (2020)

call “post-harvest” visits usually take place during the planting season, whereas “post-

planting” visits fall within the harvest.

Table 3: Time correspondence of CRU-TS variables.

wave year visit (t) visit type months (τ)
1 2010 1 post-planting AUG - DEC
1 2011 2 post-harvest MAR - JUL
2 2012 3 post-planting AUG - DEC
2 2013 4 post-harvest MAR - JUL
3 2015 5 post-planting AUG - DEC
3 2016 6 post-harvest MAR - JUL

Notes: Post-planting visits correspond to August thru December, whereas post-harvest visits are assumed
to aggregate information from March thru July.
Source: author’s own compilation.

Based on this correspondence between t and τ , I can now offer more specific insight into

the variables that are included in the climate vector cit. Some of the climate variables are

cumulative by nature and can, therefore, be aggregated by adding the monthly observations

up over the five month periods associated with each visit. This concerns the variable PRE.

Other variables - notably temperature - are mean values of daily observations.

Alas, the use of monthly average climate data attenuates much of the variation in daily

weather and masks the importance of extreme temperatures to some extent. To not make

matters worse, I do not average the monthly maximum and minimum temperature values

further. Rather, the variables TMN and TMX are aggregated by choosing out of the five

months associated to each visit the one that lies furthest from the mean temperature in

either direction. TMP itself is, on the other hand, averaged over each visit’s time window.

48DTR is omitted as it would cause multicollinearity related to TMN and TMX. WET essentially
measures the same phenomenon as PRE. VAP and PET are omitted as they have no clear theoretical
connection to child labour and may cause problems with multicollinearity as well. FRS is omitted because
there are no recorded days below freezing.
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5.2 Correcting for selection bias

Plotting the dependent variable - children’s weekly working hours including household

chores - in figure 5 shows a cluster at zero due to the fact that most children do in fact

not work at all. In statistical terms, the data is censored at zero due to a selection process

that selects children into two groups - those who work and those who do not.49 As a result

of this unobserved selection process, the effects estimated by standard FE may be biased

(viz. selection bias). Thus, the approach presented above needs to be adjusted.

Figure 5: Child labour is censored at zero

Note: Observed child labour hours including household chores, which were constructed from the GHS, are
censored at zero. The graph was drawn from the pooled data of all six cross sections. The individual cross
sections show the same pattern. Source: Author’s own compilation.

In cross-sectional applications, sample selection is commonly corrected for by mod-

elling the selection process and the observed process in two separate equations. The Tobit

estimator (Tobin, 1958; Amemiya, 1984) and Heckman’s selection correction (Heckman,

1979) method are the most used estimators of this kind. Unfortunately, these frameworks

do not readily extend to panel data models with FE.50

Wooldridge (1995), however, proposes an alternative method for the estimation of panel

49This is also known as the “extensive margin” of labour supply.
50The issue is that the first equation, which models the selection process, is a binary choice model that

is commonly non-linear. Unlike in linear models, which remain consistent when the fixed effect is treated
as a parameter to be estimated, non-linear models are generally not consistent in this setting (This is the
well known “incidental parameters problem”).
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data with unobserved, time-invariant effects and selection bias. Semykina and Wooldridge

(2010) extend this estimator to handle the presence of arbitrary correlation between un-

observed heterogeneity and explanatory variables. While I shall briefly introduce this

estimator, interested readers are referred to the original papers for a rigurous presentation

of the material.

To be precise, the estimator proposed by Wooldridge (1995) is a correlated random

effects model. It is, however, of the fixed effects (FE) variety “in the sense that the un-

observed component is allowed to be correlated with the observable explanatory variables,

and we impose no distributional assumptions on the unobserved effect” (p.115). In addi-

tion, it does not require the idiosyncratic errors in the regression equation to have a known

distribution, and they can have serial dependence of unspecified form.

Rewrite equation 9 as

yit = xitθ + ci1 + uit1, t = 1, ..., T, (14)

where, for ease of notation, xit is a 1 × K vector of explanatory variables that includes

both the adapted climate variables f̄mit and individual and household variables xit from

equation 9. ci is the unobserved effect, and uit1 is an idiosyncratic error.

Define a 1×L > K vector of instruments, zit, which is strictly exogenous on ci1. Note

that zit contains all elements of xit that are exogenous in equation 14 and that xit and zit

both contain an intercept.

Next, Semykina and Wooldridge (2010) introduce selection by defining

s∗it = zitδt + ci2 + uit2, t = 1, ..., T. (15)

Here, ci2 is an unobserved effect and uit2 is an idiosyncratic error. Moreover, let

sit = 1[s∗it > 0] = 1[zitδt + ci2 + uit2 > 0], (16)

where 1[·] is the indicator function. By definition, sit is a selection indicator that equals
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one if yit is observed, and zero otherwise. Note that in the current application, the data

clearly shows that the censored variable child labour yit ≡ max(0, s∗it) is observed for all t;

we observe actual values for hours worked rather than a binary indicator only. Wooldridge

calls this “partial observability of the selection variable” (1995, p. 120).

Assume that the model summarised in equations 14, 15 and 16 holds. Moreover, let

ci1 = g(zi) + ai1 = z̄i + ai1, (17)

where g(·) is an arbitrary known function. Equation 17 is similar to the within transforma-

tion. It “produces fixed-effects slope estimators when using a balanced panel”(Semykina

and Wooldridge, 2010, p. 377; see also Mundlak,1978). In an unbalanced panel, however,

it is different from the within-transformation because it models ci1 as a function of z̄i, the

elements of which are not distorted by selection. Therefore, “the model is ideologically

similar to fixed effects, but is free of selection bias”(Semykina and Wooldridge, 2010, p.

377). This makes it very attractive for the present case, since we are dealing with an

unbalanced panel and sample selection.

For the case of an unbalanced panel, Semykina and Wooldridge (2010) find that plug-

ging Equation 17 into Equation 14 yields

yit = xitθ + z̄iη + E(vit1|zi, sit) + eit1, (18)

where, by construction, E(eit1|zi, sit) = 0 for t = 1, ..., T .51 If E(vit1|zi, sit) were known,

Equation 18 could be consistently estimated by pooled Two Stage Least Squares (2SLS).

They also derive that, for sit = 1,

yit = xitθ + z̄iη + µλ̂it + eit1, (19)

51Note that it is not necessary that E(eit1|zi, si) = 0. Semykina and Wooldridge emphasise that “in
fact, generally eit1 will be correlated with selection indicators, sir, for r 6= t. This is a key benefit of the
current approach: we can ignore selection in other time periods that might be correlated with vit1”(2010,
p. 380).
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where λ̂it is an estimate of the inverse mills ratio, obtained by probit. This, in turn, leads

to the final procedure to estimate selection-corrected estimates from (unbalanced) panel

data with unobserved, time-invariant effects.

Procedure 4.1.1. (Semykina and Wooldridge, 2010):

1. For each t, estimate the selection equation by probit to get T inverse mills ratios λ̂it.

2. For sit = 1, use pooled 2SLS to estimate Equation 19. Use zit1, z̄i and λ̂it as instru-

ments.

3. “Panel-bootstrap” the asymptotic variance. “This involves resampling cross-sectional

units (and all time periods for each unit sampled) and using the bootstrap sample

to approximate the distribution of the parameter vector. The estimator is consistent

for N →∞ and T fixed”(Semykina and Wooldridge, 2010, p. 378).

Applying this estimator to the use case specified in Equation 9, I first run a Probit, re-

gressing an indicator (1 if the child works, 0 otherwise) on the climate and household

independent variables and retrieve the inverse mills ratios λ̂it. At the second stage, I esti-

mate the equation

yit =
M∑
m=1

βmf̄mit + xitγ + z̄iη + µλ̂it + εit (20)

for all children who work non-zero hours by 2SLS. Household size is used as an identifying

variable for selection.52 Lastly, I bootstrap the asymptotic variance as suggested above.

200 bootstrap replications should be sufficient to obtain reliable standard errors (Efron

and Tibshirani, 1994, p. 47).53

52Semykina and Wooldridge (2010) call this an “instrument”. The instrument should be strongly asso-
ciated with the selection variable but unrelated to child labour hours. While household size is correlated
more strongly with selection than with child labour hours, it remains a weak instrument, to be replaced
whenever more suitable data is available.

53I use the XTHECKMAN module (Rios-Avila, 2021), which implements the estimator of Wooldridge (1995)
and Semykina and Wooldridge (2010) in Stata.
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6 Findings

Table 4 summarises the output from four different regression models, all of which estimate

the effects of climate variables on child labour hours. The first two columns show the

coefficients on the climate variables from a pooled Ordinary Least Squares (OLS, Model (1))

and a panel regression with unit Fixed Effects (FE, Model (2)). The third column presents

the coefficients obtained from the Correlated Random Effects (CRE, Model (3)) model

proposed by Wooldridge (1995) and Semykina and Wooldridge (2010). Unlike models (1)

and (2), model (3) is a two stage model that corrects for selection bias.

Note that models (1), (2), and (3) use the climate variables in their level (and precipi-

tation squared) rather than cubic b-splines. To further investigate nonlinearities of climate

effects, model (4) combines CRE with cubic b-splines as discussed in the preceding sec-

tion. The functional flexibility of b-splines comes, however, at the cost of interpretability

which is reduced to directional, qualitative statements. Therefore, the most interesting

coefficients in table 4 are perhaps those of model (3).
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Table 4: Climate effects on weekly child labour: regression results.

Model (1) (2) (3) (4)
Estimator OLS FE CRE CRE
cubic b-spline section - - - 1 2 3 4 5

Variable
Precipitation (100 mls) -0.673∗∗∗ -1.023∗∗∗ -4.035∗∗∗ -17.644∗∗∗ -18.669∗∗∗ -15.521∗∗∗ -24.795∗∗∗ -24.219∗∗∗

(0.20) (0.22) (0.44) (2.35 (1.74) (2.15) (1.85) (2.97)

Precipitation squared 0.023∗ 0.051∗∗∗ 0.241∗∗∗

(0.01) (0.01) (0.03)

Mean temperature (°C) 2.315∗∗∗ 1.008∗∗ 4.118∗∗∗ -4.961∗∗∗ 0.943 2.417∗ 2.095 3.384∗

(0.17) (0.33) (0.55) (1.16) (1.03) (1.05) (1.22) (1.38)

Maximum temperature (°C) -1.24∗∗∗ -0.947∗∗∗ -1.701∗∗∗ 2.583 -3.890∗∗∗ -3.611∗ -2.910∗ -6.238∗∗∗

(0.08) (0.09) (0.19) (1.79) (1.10) (1.60) (1.23) (1.59)

Minimum temperature (°C) -0.712∗∗∗ -0.259 -1.510∗∗∗ 6.079∗∗ 10.585∗∗∗ -2.524 1.556 0.774
(0.06) (0.14) (0.23) (1.92) (1.34) (1.68) (1.23) (1.56)

Unit FE no yes yes yes
Zone FE yes yes no no
Time FE yes yes yes yes
N 55,735 55,735 55,735 55,735

Estimates of climate effects on weekly child labour hours from pooled OLS (1), Fixed Effects (2), Correlated Random Effects (Wooldridge,
1995) with level variables (3), and Correlated Random Effects with variables transformed through five-fold cubic b-splines to account for
non-linearities (4).
Notes: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Standard errors in brackets. Models (1) and (2) use standard errors that are clustered for
the 18,735 individuals who reoccur in the panel. Models (3) and (4) use panel-bootstrapped standard errors calculated from 200 bootstrap
replications, clustered the same way. All four models control for age, age squared, sex, MPI, log of household consumption, and sector (rural
or urban). Models (3) and (4) use household size as an instrument for selection in the first stage. Precipitation squared is used in models (1),
(2) and (3) to account for nonlinearities while using the level variables. Models (1), (2) and (3) can be interpreted the usual way, which is not
true for model (4) due to the variables in b-splines. Source: Author’s own compilation.
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All models seem to agree that, on average, an increase in precipitation is associated

with a decrease in child labour. This effect is not linear though since the coefficient on

Precipitation squared is positive and significant in models (1) thru (3). In fact, plotting the

predicted child labour hours from model (3) against precipitation in figure 6 shows that the

negative effect is strongest a the lowest levels of precipitation and flattens for precipitation

volumes of more than 400 ml. One interpretation of this fact is that households who already

experienced a high load of precipitation need not send their children to water their crops.

An additional increase in precipitation has less negative effects on child labour because the

remaining tasks need to still be carried out. This may also imply that droughts affect the

production function more negatively than normal and even high amounts of precipitation

would. This negative shock to the production function would also decrease the demand

for child labour in accordance with the theoretical perspective of section 3.

As for temperature, it seems that an increase in the mean temperature is, by itself,

conducive to child labour. According to model (3), a one degree increase in mean temper-

ature is associated with an additional 4 hours spent at work, conditional on that the child

is working - this is a considerable increase, given working children’s average of 8.4 hours

weekly. The effect may not be as linear as this coefficient suggests, though. Child labour

tends to decrease at temperatures in the low twenties and only picks up at temperatures

of 27 degrees celsius or more - giving rise to the U-shape depicted in the upper panel of

figure 6. These nonlinearities are not reliably evidenced by the b-splines of model (4),

though, which means that the increasing right side of the U might also be the effect of

other covariates.

As for the tails of the temperature distribution, it seems that both maximum and

minimum temperatures are negatively associated with child labour hours. In fact, the

coefficients for both maximum and minimum temperatures are consistently negative and

highly significant with the exception of some spline sections in model (4).

Controlling for selection bias, model (3) suggests that a one degree increase in maxi-

mum temperature is associated with a decrease of child labour by almost two hours. The

b-splines of model (4) show that this negative effect only takes shape for higher levels
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of maximum temperature, whereas the effects of the first quintile is non-significant and,

therefore, statistically not different from zero. Interestingly, plotting the predicted values

of child labour against maximum temperature, an increasing line is obtained - see the lower

left graph in the upper panel of figure 6. It is unclear why this is, but it is reasonable to

think that the negative marginal effect of maximum temperature is being outweighed by,

for instance, the positive effect of a mean-temperature increase.

One additional degree of minimum temperature decreases child labour by 1.5 hours

on average. Once again, model (4) points to important nonlinearities in these effects. It

suggests, that at the lower two quintiles, minimum temperature is actually associated with

an increase in child labour. This leads to the inverted U-shape depicted in the lower right

graph in the upper panel of figure 6. This is a reasonable result, considering that there are

no freezing days in the data and that Nigeria, more generally, tends to suffer from drought

rather than from freezing. Therefore, in our case study, lower minimum temperatures are

unlikely to negatively affect plant growth, leaving the need for labour input unaffected at

lower minimum temperature.
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Figure 6: Predicted weekly child labour hours and marginal effects from Model (3).

Note: The upper four panels of this figure graph a fractional polynomial fit on the predicted child labour
from the CRE-level model (3) in table 4 against the climate variables precipitation (by 100 mls), mean-,
maximum, and minimum temperature (by °C). 95 percent confidence intervals in grey. The lower four
panels plot the marginal effects of the same climate variables, also with 95 percent confidence intervals.
Source: Author’s own compilation.
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In summary, the analysis suggests that a permanent increase in mean temperature

due to global warming leads to an increase in child labour. This effect may be somewhat

counter-acted by the negative influence of weather variability on crops, which is also to

be expected as the climate continues changing (Pachauri et al., 2015). Higher maximum

temperatures seem to attenuate child labour supply in Nigeria slightly, which might be

explained by a decrease in labour demand when there is less crop to harvest during hot

periods. Minimum temperatures display mixed effects, forming an inverted-U shape with

its turning point at approximately 16 degrees celsius. Before this point, it seems that

child work increases with minimum temperature. Above it, the effect changes direction.

Precipitation decreases child labour, in particular at very low quantities which points to

the importance of droughts in the region. This last finding that child labour decreases

in precipitation stands in contrast to earlier findings for Tanzania (Dumas, 2020), which

evidenced a positive relationship.

Some of the control variables, which have been omitted from table 4, also allow inter-

esting insights. Somewhat surprisingly, the analysis finds no statistically significant effect

of children’s gender on the amount of their work hours. The effect of total household

consumption spending is that with an aditional percentage point of household spending,

children work 1.5 hours more. This is in line with the “wealth paradox” that was first

described by Bhalotra and Heady (2003); children of wealthier families tend to work more

rather than less on average. Interestingly, though, the same is not true when employing

MPI as an alternative poverty metric. The coefficient on MPI is non-significant.

7 Conclusion

This paper sought to describe the effects of climatic change on agricultural child labour.

To this end, section 3 developed a simple household decision model rooted in the child

labour literature. The main hypothesis of this model is that, all things equal, child labour

should decrease with ’bad’ weather and increase with ’good’ weather, where bad weather

affects plant growth negatively and good weather aids plant growth. The essential idea is
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that plant-growth is the one variable in the farm production function that is most closely

linked to weather outcomes, which are in turn determined stochastically by the climate.

As plants grow less, households’ labour demand decreases and they react by decreasing the

amount of child labour supplied, as they are assumed to be averse to child labour through

the luxury axiom.

The hypothesis is tested in the empirical part of this study for the the case of Nigeria.

The findings of this analysis are much more differentiated than the simple hypothesis posed.

It is found that child labour tends to decrease, on average, with weather that is expected

to hamper plant development. Extremely hot or cold temperatures and heavy rains are

examples of this. However, the analysis also shows that child labour increases in mean

temperature. This is counter-intuitive to the theoretical perspective of section 3. The use

of b-splines in one of the regression models, moreover, suggest the existence of important

non-linear effects for all four climate variables.

Thus, the evidence points out the limitations of my simple theoretical model and,

consequently, of its hypothesis. One major criticism that ought to be made is that it does

not at all account for markets, including the credit and labour markets which both have

proven to be influential factors in other studies (e.g., Bhalotra and Heady, 2003; Dumas,

2013). Their positive and negative effects (e.g., through selling labour or consumption

smoothing) are not taken into consideration.

Moreover, there are some extensions that could have been made to the theoretical

model’s formulation of aggregate labour supply, of children’s productivity in relation to

that of adults, and the rather strict assumptions on time allocation. I chose not to make

these extensions in the spirit of Occam’s razor - instead, they are included in the annex.

While these extensions might make the model’s equations resemble real life a little better,

they also would increase its complexity considerably. This would have been inefficient to

do, given the limitations of the model in other domains. Rather than making the existing

parts of the model more complex, future research should be geared towards integrating the

roles of markets.

Considering only the empirical section of this study, another criticism remains. I
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essentially employ what has been dubbed the “dumb farmer approach” by Auffhammer and

Mansur (2014). My analysis does not take into consideration farmer’s climate adaptation

strategies, like changing farming practices or migrating. Therefore, the findings I present

here are only really useful for the short term. They may, however, retain their validity

for longer when focusing on the type of farmers implied by this study. It is, perhaps,

reasonable to assume that poor subsistence-farming households would be ill-equipped to

adapt to climate change, compared to more affluent ones. The effects of climate adaptation

on child labour remain an important field of study, not least because one strategy to save

labour costs when times get rough is to employ one’s own children.

One more caveat concerns data availability. Due to the negative connotations sur-

rounding the topic of child labour, parents may be inclined to under-report how much

their children actually work. Therefore, the extent of child labour reflected in the data

is likely lower than the real scope of the problem. Moreover, it is hard to come by high-

definition climate data for the SSA region. While I use monthly climate data, it would

be preferrable to have daily climate variables at one’s disposal because monthly means

already smoothen out a lot of variation from the data. The non-linearities reported here

could be estimated more precisely with daily weather data.

This study merely represents a first attempt at gauging the complex implications of the

ongoing climate crisis for working children. It shows that climate effects on child labour

seem to be non-linear and, in particular, that the projected increase in mean temperatures

may stall ongoing global attempts at eliminating child labour by 2025 along with SDG

8. In a sense, this study also relates to the literature on measuring the ‘cost of carbon’.

If child labour is considered a global bad, appropriate resources need to be used in order

to counter it. Thus, this paper provides yet another reason for taking urgent action, in

accordance with the Paris Climate Accord and the latest climate science, to limit global

temperature rise in the 21st century to 1.5°C above pre-industrial levels.
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(2018). Present and future köppen-geiger climate classification maps at 1-km resolution. Sci-

entific Data, 5(1):1–12.

Becker, G. (1964). Human Capital: A Theoretical and Empirical Analysis, with Special Reference

to Education. Harvard University Press, Cambridge, MA.

Bhalotra, S. (2002). Parent Altruism. Annual Conference, Royal Economic Society.

Bhalotra, S. and Heady, C. (2000). Child Farm Labour: Theory and Evidence. Discussion Paper,

Sunotory and Toyota International Centres for Economics and Related Disciplines at LSE,

London.

Bhalotra, S. and Heady, C. (2003). Child Farm Labor: The Wealth Paradox. The World Bank

Economic Review, 17(2):197–227.

Blundell, R., Preston, I., and Walker, I., editors (1994). The Measurement of Household Welfare.

Cambridge University Press, Cambridge.

56



Boeckx, P., Bauters, M., and Dewettinck, K. (2020). Poverty and climate change challenges for

sustainable intensification of cocoa systems. Current Opinion in Environmental Sustainability,

47:106–111.

Bourguignon, F. and Chakravarty, S. R. (2003). The Measurement of Multidimensional Poverty.

The Journal of Economic Inequality, 1(1):25–49.

Boutin, D. (2014). Climate Vulnerability, Communities’ Resilience and Child Labour. IZA

Discussion Paper 8567, IZA, Bonn.
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A Annex: Extensions to the theoretical model

The following pages present possible extensions to the theoretical model of section 3. A com-

prehensive repository of information and files related to this project, including additional detail

about the empirical analysis and its findings and an outline of the computational implementation,

is available online at www.github.com/mathiasweidinger/MPPTH.

A.1 Easing assumptions on time allocation

The model in section 3 maintained the assumption that adults work all of their time, while

children could set aside a share of their time e ≥ 1 to work effort. Alternatively, one could allow

both children and adults to allocate their time between work and non-work. Keeping individual’s

time endowment standardised at 1, individual i’s work time share can be written as li ∈ [0, 1].

The household’s total aggregate time labour hours are obtained by summing li across children:∑ı̂
i=1 li = LC . Conversely, all adult’s labour input is captured by

∑I
i=I−ı̂ li = LA. In fact, this

setup would allow for work time to vary not only between adults and children, but also across

individuals of the same type.

A.2 Children’s productivity and adult supervision

In the model presented in section 3, children were assigned an adult equivalence factor of γ ∈ [0, 1]

that scaled their work units to those of adults, making child and adult work imperfect substitutes.

Bar and Basu (2009) extend this substitution axiom (Basu and Van, 1998), contending that

child labour must be supervised, using proportional amounts of adult labour, in order to be

productive. In their model, children are employed when matched with an appropriate amount

of adult supervision and left idle otherwise; child and adult labour are substitutes within a

bound beyond which they become complements. Toddlers aside, this underlying assumption that

unsupervised are completely unproductive might be too restrictive; Once instructed, even young

children are able to replicate a multitude of simple tasks without constant monitoring. Rather

than establishing child productivity, therefore, adult supervision can be thought to extend a low

innate productive capacity. As a result, the household may make use of a given child’s labour

even when there is not sufficient adult time left to supervise it. This idea is developed further in
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this possible extension to the simple model.

To consider this formally, assume that child labour is necessarily less productive than adult

labour by a factor v(u), which specifies the adult-equivalence of child labour if a fraction u ∈ (0, 1)

of adult labour is used to supervise the fraction s ∈ (0, 1) of child labour. Supervision generally

increases children’s productivity, such that

0 < v ≤ v0 = v(u = 0) ≤ v(0 < u < 1) ≤ v(u = 1) ≤ v ≤ 1 ∀u ∈ (0, 1],

where v and v are the absolute boundaries of children’s productive potential. I call s the super-

vision rate, u the intensity of supervision, v(u) the technology of skill enhancement, and v0 the

adult-equivalence factor of unsupervised child labour (or “raw skill”). In absence of supervision

(viz., s = 0), the initial adult-equivalent of aggregate child labour input is v0LC and the house-

hold’s total labour input in this case is LI = LA + v0LC .

When supervision occurs, the technology of skill enhancement v(u) exhibits monotonicity

and decreasing returns to scale from supervision, meaning that

∂v(u)

∂u
> 0, and

∂2v(u)

∂u2
< 0.

Moreover, it must hold that v(u) > u ∀u ∈ (0, 1), since otherwise it would not be worthwhile to

invest in supervision. Any monotonically increasing and concave function can be used to represent

v(u), provided it meets these few requirements. Panel (a) of figure 7 illustrates the shape of v(u)

by the example of the function v(u) = v0 + (v − v0)u
1
3 , using four different values of v0.

54

The adult-labour equivalents of any given combinations of adult and child labour, considering

the complementary of supervision in addition to the substitution between La and Lc, can be

captured by the household’s effective labour supply:

LI =


LA − suLC + sv(u)LC + (1− s)v0LC if suLC < LA

v(u)LA
u + v0

(
Lc − LA

u

)
if suLC = LA

. (21)

This specification allows for the household decision maker to choose flexibly not only the

54Note that v is unambiguously defined as follows from the definition of v and u: v(u = 1) ≤ v ≤ 1 and
v(u) ≥ u ∀u ∈ (0, 1) ⇐⇒ v(u = 1) = v = 1.
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Figure 7: Supervision, child productivity, and labour supply.

(a) Technology of skill enhancement. (b) Effective labour isoquants.

Note: (a) The figure graphs four versions of the function v(u) = v0 + (v− v0)u
1
3 for different values of raw

skill v0. The dotted curve corresponds to v0 = 0 and the curves above it to v0 = 0.1, to v0 = 0.5, and to
v0 = 0.75 respectively. (b) The dotted isoquant corresponds to v0 = 0, whereas the isoquants to its left
correspond to v0 = 0.1, to v0 = 0.5, and to v0 = 0.75 respectively. The upward sloping line in gray, which
connects the isoquant kinks, is defined by its slope, the intensity of supervision u. Source: author’s own
compilations.

levels of adult and child labour supply, but also the fraction of children to work with and with-

out supervision, as well as the intensity of such supervision; all this in view of optimising the

household’s welfare. Setting v0 = 0, s = 1, u < 1 and v(u) = 1 ∀u, equation 21 simplifies to

the labour supply function in Bar and Basu (2009). Panel (b) of figure 7 plots combinations of

child and adult labour, using the same values for v0 as in Panel (a). The dotted curve on top

corresponds to the Bar and Basu perspective that unsupervised child labour must be entirely

unproductive (i.e. v0 = 0).55 Note that along each of the piece-wise linear functions in panel (b),

the effective labour input L stays the same, indicating that, holding other inputs constant, they

are isoquants in the farm production.

55For all functions graphed in figure 7, it is assumed that u = 0.1 and s = 1.
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